first commit

This commit is contained in:
TemanSv1n
2025-12-02 18:52:45 +03:00
commit bdda481bff
202 changed files with 73723 additions and 0 deletions

View File

@@ -0,0 +1,738 @@
/*
DS3231.cpp: DS3231 Real-Time Clock library
Eric Ayars
4/1/11
Spliced in DateTime all-at-once reading (to avoid rollover) and unix time
from Jean-Claude Wippler and Limor Fried
Andy Wickert
5/15/11
Fixed problem with SD processors(no function call) by replacing all occurences of the term PM, which
is defined as a macro on SAMD controllers by PM_time.
Simon Gassner
11/28/2017
Released into the public domain.
*/
#include "DS3231.h"
// These included for the DateTime class inclusion; will try to find a way to
// not need them in the future...
#if defined(__AVR__)
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#endif // if defined(__AVR__)
// Changed the following to work on 1.0
// #include "WProgram.h"
#include <Arduino.h>
#define CLOCK_ADDRESS 0x68
#define SECONDS_FROM_1970_TO_2000 946684800
// Constructor
DS3231::DS3231() {
// nothing to do for this constructor.
}
// Utilities from JeeLabs/Ladyada
////////////////////////////////////////////////////////////////////////////////
// utility code, some of this could be exposed in the DateTime API if needed
// DS3231 is smart enough to know this, but keeping it for now so I don't have
// to rewrite their code. -ADW
static const uint8_t daysInMonth[] PROGMEM = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
// number of days since 2000/01/01, valid for 2001..2099
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
if (y >= 2000)
y -= 2000;
uint16_t days = d;
for (uint8_t i = 1; i < m; ++i) days += pgm_read_byte(daysInMonth + i - 1);
if ((m > 2) && (y % 4 == 0))
++days;
return days + 365 * y + (y + 3) / 4 - 1;
}
static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
return ((days * 24L + h) * 60 + m) * 60 + s;
}
/*****************************************
Public Functions
*****************************************/
/*******************************************************************************
* TO GET ALL DATE/TIME INFORMATION AT ONCE AND AVOID THE CHANCE OF ROLLOVER
* DateTime implementation spliced in here from Jean-Claude Wippler's (JeeLabs)
* RTClib, as modified by Limor Fried (Ladyada); source code at:
* https://github.com/adafruit/RTClib
******************************************************************************/
////////////////////////////////////////////////////////////////////////////////
// DateTime implementation - ignores time zones and DST changes
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second
DateTime::DateTime(uint32_t t) {
t -= SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970
ss = t % 60;
t /= 60;
mm = t % 60;
t /= 60;
hh = t % 24;
uint16_t days = t / 24;
uint8_t leap;
for (yOff = 0;; ++yOff) {
leap = yOff % 4 == 0;
if (days < 365 + leap)
break;
days -= 365 + leap;
}
for (m = 1;; ++m) {
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
if (leap && (m == 2))
++daysPerMonth;
if (days < daysPerMonth)
break;
days -= daysPerMonth;
}
d = days + 1;
}
DateTime::DateTime(uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec) {
if (year >= 2000)
year -= 2000;
yOff = year;
m = month;
d = day;
hh = hour;
mm = min;
ss = sec;
}
static uint8_t conv2d(const char* p) {
uint8_t v = 0;
if (('0' <= *p) && (*p <= '9'))
v = *p - '0';
return 10 * v + *++p - '0';
}
// UNIX time: IS CORRECT ONLY WHEN SET TO UTC!!!
uint32_t DateTime::unixtime(void) const {
uint32_t t;
uint16_t days = date2days(yOff, m, d);
t = time2long(days, hh, mm, ss);
t += SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000
return t;
}
// Slightly modified from JeeLabs / Ladyada
// Get all date/time at once to avoid rollover (e.g., minute/second don't match)
static uint8_t bcd2bin(uint8_t val) {
return val - 6 * (val >> 4);
}
static uint8_t bin2bcd(uint8_t val) {
return val + 6 * (val / 10);
}
DateTime RTClib::now() {
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0); // This is the first register address (Seconds)
// We'll read from here on for 7 bytes: secs reg, minutes reg, hours, days, months and years.
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 7);
uint8_t ss = bcd2bin(Wire.read() & 0x7F);
uint8_t mm = bcd2bin(Wire.read());
uint8_t hh = bcd2bin(Wire.read());
Wire.read();
uint8_t d = bcd2bin(Wire.read());
uint8_t m = bcd2bin(Wire.read());
uint16_t y = bcd2bin(Wire.read()) + 2000;
return DateTime(y, m, d, hh, mm, ss);
}
///// ERIC'S ORIGINAL CODE FOLLOWS /////
byte DS3231::getSecond() {
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x00);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
return bcdToDec(Wire.read());
}
byte DS3231::getMinute() {
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x01);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
return bcdToDec(Wire.read());
}
byte DS3231::getHour(bool& h12, bool& PM_time) {
byte temp_buffer;
byte hour;
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x02);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
temp_buffer = Wire.read();
h12 = temp_buffer & 0b01000000;
if (h12) {
PM_time = temp_buffer & 0b00100000;
hour = bcdToDec(temp_buffer & 0b00011111);
} else {
hour = bcdToDec(temp_buffer & 0b00111111);
}
return hour;
}
byte DS3231::getDoW() {
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x03);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
return bcdToDec(Wire.read());
}
byte DS3231::getDate() {
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x04);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
return bcdToDec(Wire.read());
}
byte DS3231::getMonth(bool& Century) {
byte temp_buffer;
byte hour;
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x05);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
temp_buffer = Wire.read();
Century = temp_buffer & 0b10000000;
return bcdToDec(temp_buffer & 0b01111111);
}
byte DS3231::getYear() {
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x06);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
return bcdToDec(Wire.read());
}
void DS3231::setSecond(byte Second) {
// Sets the seconds
// This function also resets the Oscillator Stop Flag, which is set
// whenever power is interrupted.
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x00);
Wire.write(decToBcd(Second));
Wire.endTransmission();
// Clear OSF flag
byte temp_buffer = readControlByte(1);
writeControlByte((temp_buffer & 0b01111111), 1);
}
void DS3231::setMinute(byte Minute) {
// Sets the minutes
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x01);
Wire.write(decToBcd(Minute));
Wire.endTransmission();
}
void DS3231::setHour(byte Hour) {
// Sets the hour, without changing 12/24h mode.
// The hour must be in 24h format.
bool h12;
// Start by figuring out what the 12/24 mode is
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x02);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
h12 = (Wire.read() & 0b01000000);
// if h12 is true, it's 12h mode; false is 24h.
if (h12) {
// 12 hour
if (Hour > 12) {
Hour = decToBcd(Hour-12) | 0b01100000;
} else {
Hour = decToBcd(Hour) & 0b11011111;
}
} else {
// 24 hour
Hour = decToBcd(Hour) & 0b10111111;
}
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x02);
Wire.write(Hour);
Wire.endTransmission();
}
void DS3231::setDoW(byte DoW) {
// Sets the Day of Week
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x03);
Wire.write(decToBcd(DoW));
Wire.endTransmission();
}
void DS3231::setDate(byte Date) {
// Sets the Date
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x04);
Wire.write(decToBcd(Date));
Wire.endTransmission();
}
void DS3231::setMonth(byte Month) {
// Sets the month
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x05);
Wire.write(decToBcd(Month));
Wire.endTransmission();
}
void DS3231::setYear(byte Year) {
// Sets the year
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x06);
Wire.write(decToBcd(Year));
Wire.endTransmission();
}
void DS3231::setClockMode(bool h12) {
// sets the mode to 12-hour (true) or 24-hour (false).
// One thing that bothers me about how I've written this is that
// if the read and right happen at the right hourly millisecnd,
// the clock will be set back an hour. Not sure how to do it better,
// though, and as long as one doesn't set the mode frequently it's
// a very minimal risk.
// It's zero risk if you call this BEFORE setting the hour, since
// the setHour() function doesn't change this mode.
byte temp_buffer;
// Start by reading byte 0x02.
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x02);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
temp_buffer = Wire.read();
// Set the flag to the requested value:
if (h12) {
temp_buffer = temp_buffer | 0b01000000;
} else {
temp_buffer = temp_buffer & 0b10111111;
}
// Write the byte
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x02);
Wire.write(temp_buffer);
Wire.endTransmission();
}
float DS3231::getTemperature() {
// Checks the internal thermometer on the DS3231 and returns the
// temperature as a floating-point value.
// Updated / modified a tiny bit from "Coding Badly" and "Tri-Again"
// http://forum.arduino.cc/index.php/topic,22301.0.html
byte tMSB, tLSB;
float temp3231;
// temp registers (11h-12h) get updated automatically every 64s
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x11);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 2);
// Should I do more "if available" checks here?
if (Wire.available()) {
tMSB = Wire.read(); // 2's complement int portion
tLSB = Wire.read(); // fraction portion
temp3231 = ((((short)tMSB << 8) | (short)tLSB) >> 6) / 4.0;
}
else {
temp3231 = -9999; // Some obvious error value
}
return temp3231;
}
void DS3231::getA1Time(byte& A1Day, byte& A1Hour, byte& A1Minute, byte& A1Second, byte& AlarmBits, bool& A1Dy, bool& A1h12, bool& A1PM) {
byte temp_buffer;
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x07);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 4);
temp_buffer = Wire.read(); // Get A1M1 and A1 Seconds
A1Second = bcdToDec(temp_buffer & 0b01111111);
// put A1M1 bit in position 0 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>7;
temp_buffer = Wire.read(); // Get A1M2 and A1 minutes
A1Minute = bcdToDec(temp_buffer & 0b01111111);
// put A1M2 bit in position 1 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>6;
temp_buffer = Wire.read(); // Get A1M3 and A1 Hour
// put A1M3 bit in position 2 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>5;
// determine A1 12/24 mode
A1h12 = temp_buffer & 0b01000000;
if (A1h12) {
A1PM = temp_buffer & 0b00100000; // determine am/pm
A1Hour = bcdToDec(temp_buffer & 0b00011111); // 12-hour
} else {
A1Hour = bcdToDec(temp_buffer & 0b00111111); // 24-hour
}
temp_buffer = Wire.read(); // Get A1M4 and A1 Day/Date
// put A1M3 bit in position 3 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>4;
// determine A1 day or date flag
A1Dy = (temp_buffer & 0b01000000)>>6;
if (A1Dy) {
// alarm is by day of week, not date.
A1Day = bcdToDec(temp_buffer & 0b00001111);
} else {
// alarm is by date, not day of week.
A1Day = bcdToDec(temp_buffer & 0b00111111);
}
}
void DS3231::getA2Time(byte& A2Day, byte& A2Hour, byte& A2Minute, byte& AlarmBits, bool& A2Dy, bool& A2h12, bool& A2PM) {
byte temp_buffer;
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x0b);
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 3);
temp_buffer = Wire.read(); // Get A2M2 and A2 Minutes
A2Minute = bcdToDec(temp_buffer & 0b01111111);
// put A2M2 bit in position 4 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>3;
temp_buffer = Wire.read(); // Get A2M3 and A2 Hour
// put A2M3 bit in position 5 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>2;
// determine A2 12/24 mode
A2h12 = temp_buffer & 0b01000000;
if (A2h12) {
A2PM = temp_buffer & 0b00100000; // determine am/pm
A2Hour = bcdToDec(temp_buffer & 0b00011111); // 12-hour
} else {
A2Hour = bcdToDec(temp_buffer & 0b00111111); // 24-hour
}
temp_buffer = Wire.read(); // Get A2M4 and A1 Day/Date
// put A2M4 bit in position 6 of DS3231_AlarmBits.
AlarmBits = AlarmBits | (temp_buffer & 0b10000000)>>1;
// determine A2 day or date flag
A2Dy = (temp_buffer & 0b01000000)>>6;
if (A2Dy) {
// alarm is by day of week, not date.
A2Day = bcdToDec(temp_buffer & 0b00001111);
} else {
// alarm is by date, not day of week.
A2Day = bcdToDec(temp_buffer & 0b00111111);
}
}
void DS3231::setA1Time(byte A1Day, byte A1Hour, byte A1Minute, byte A1Second, byte AlarmBits, bool A1Dy, bool A1h12, bool A1PM) {
// Sets the alarm-1 date and time on the DS3231, using A1* information
byte temp_buffer;
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x07); // A1 starts at 07h
// Send A1 second and A1M1
Wire.write(decToBcd(A1Second) | ((AlarmBits & 0b00000001) << 7));
// Send A1 Minute and A1M2
Wire.write(decToBcd(A1Minute) | ((AlarmBits & 0b00000010) << 6));
// Figure out A1 hour
if (A1h12) {
// Start by converting existing time to h12 if it was given in 24h.
if (A1Hour > 12) {
// well, then, this obviously isn't a h12 time, is it?
A1Hour = A1Hour - 12;
A1PM = true;
}
if (A1PM) {
// Afternoon
// Convert the hour to BCD and add appropriate flags.
temp_buffer = decToBcd(A1Hour) | 0b01100000;
} else {
// Morning
// Convert the hour to BCD and add appropriate flags.
temp_buffer = decToBcd(A1Hour) | 0b01000000;
}
} else {
// Now for 24h
temp_buffer = decToBcd(A1Hour);
}
temp_buffer = temp_buffer | ((AlarmBits & 0b00000100)<<5);
// A1 hour is figured out, send it
Wire.write(temp_buffer);
// Figure out A1 day/date and A1M4
temp_buffer = ((AlarmBits & 0b00001000)<<4) | decToBcd(A1Day);
if (A1Dy) {
// Set A1 Day/Date flag (Otherwise it's zero)
temp_buffer = temp_buffer | 0b01000000;
}
Wire.write(temp_buffer);
// All done!
Wire.endTransmission();
}
void DS3231::setA2Time(byte A2Day, byte A2Hour, byte A2Minute, byte AlarmBits, bool A2Dy, bool A2h12, bool A2PM) {
// Sets the alarm-2 date and time on the DS3231, using A2* information
byte temp_buffer;
Wire.beginTransmission(CLOCK_ADDRESS);
Wire.write(0x0b); // A1 starts at 0bh
// Send A2 Minute and A2M2
Wire.write(decToBcd(A2Minute) | ((AlarmBits & 0b00010000) << 3));
// Figure out A2 hour
if (A2h12) {
// Start by converting existing time to h12 if it was given in 24h.
if (A2Hour > 12) {
// well, then, this obviously isn't a h12 time, is it?
A2Hour = A2Hour - 12;
A2PM = true;
}
if (A2PM) {
// Afternoon
// Convert the hour to BCD and add appropriate flags.
temp_buffer = decToBcd(A2Hour) | 0b01100000;
} else {
// Morning
// Convert the hour to BCD and add appropriate flags.
temp_buffer = decToBcd(A2Hour) | 0b01000000;
}
} else {
// Now for 24h
temp_buffer = decToBcd(A2Hour);
}
// add in A2M3 bit
temp_buffer = temp_buffer | ((AlarmBits & 0b00100000)<<2);
// A2 hour is figured out, send it
Wire.write(temp_buffer);
// Figure out A2 day/date and A2M4
temp_buffer = ((AlarmBits & 0b01000000)<<1) | decToBcd(A2Day);
if (A2Dy) {
// Set A2 Day/Date flag (Otherwise it's zero)
temp_buffer = temp_buffer | 0b01000000;
}
Wire.write(temp_buffer);
// All done!
Wire.endTransmission();
}
void DS3231::turnOnAlarm(byte Alarm) {
// turns on alarm number "Alarm". Defaults to 2 if Alarm is not 1.
byte temp_buffer = readControlByte(0);
// modify control byte
if (Alarm == 1) {
temp_buffer = temp_buffer | 0b00000101;
} else {
temp_buffer = temp_buffer | 0b00000110;
}
writeControlByte(temp_buffer, 0);
}
void DS3231::turnOffAlarm(byte Alarm) {
// turns off alarm number "Alarm". Defaults to 2 if Alarm is not 1.
// Leaves interrupt pin alone.
byte temp_buffer = readControlByte(0);
// modify control byte
if (Alarm == 1) {
temp_buffer = temp_buffer & 0b11111110;
} else {
temp_buffer = temp_buffer & 0b11111101;
}
writeControlByte(temp_buffer, 0);
}
bool DS3231::checkAlarmEnabled(byte Alarm) {
// Checks whether the given alarm is enabled.
byte result = 0x0;
byte temp_buffer = readControlByte(0);
if (Alarm == 1) {
result = temp_buffer & 0b00000001;
} else {
result = temp_buffer & 0b00000010;
}
return result;
}
bool DS3231::checkIfAlarm(byte Alarm) {
// Checks whether alarm 1 or alarm 2 flag is on, returns T/F accordingly.
// Turns flag off, also.
// defaults to checking alarm 2, unless Alarm == 1.
byte result;
byte temp_buffer = readControlByte(1);
if (Alarm == 1) {
// Did alarm 1 go off?
result = temp_buffer & 0b00000001;
// clear flag
temp_buffer = temp_buffer & 0b11111110;
} else {
// Did alarm 2 go off?
result = temp_buffer & 0b00000010;
// clear flag
temp_buffer = temp_buffer & 0b11111101;
}
writeControlByte(temp_buffer, 1);
return result;
}
void DS3231::enableOscillator(bool TF, bool battery, byte frequency) {
// turns oscillator on or off. True is on, false is off.
// if battery is true, turns on even for battery-only operation,
// otherwise turns off if Vcc is off.
// frequency must be 0, 1, 2, or 3.
// 0 = 1 Hz
// 1 = 1.024 kHz
// 2 = 4.096 kHz
// 3 = 8.192 kHz (Default if frequency byte is out of range)
if (frequency > 3) frequency = 3;
// read control byte in, but zero out current state of RS2 and RS1.
byte temp_buffer = readControlByte(0) & 0b11100111;
if (battery) {
// turn on BBSQW flag
temp_buffer = temp_buffer | 0b01000000;
} else {
// turn off BBSQW flag
temp_buffer = temp_buffer & 0b10111111;
}
if (TF) {
// set ~EOSC to 0 and INTCN to zero.
temp_buffer = temp_buffer & 0b01111011;
} else {
// set ~EOSC to 1, leave INTCN as is.
temp_buffer = temp_buffer | 0b10000000;
}
// shift frequency into bits 3 and 4 and set.
frequency = frequency << 3;
temp_buffer = temp_buffer | frequency;
// And write the control bits
writeControlByte(temp_buffer, 0);
}
void DS3231::enable32kHz(bool TF) {
// turn 32kHz pin on or off
byte temp_buffer = readControlByte(1);
if (TF) {
// turn on 32kHz pin
temp_buffer = temp_buffer | 0b00001000;
} else {
// turn off 32kHz pin
temp_buffer = temp_buffer & 0b11110111;
}
writeControlByte(temp_buffer, 1);
}
bool DS3231::oscillatorCheck() {
// Returns false if the oscillator has been off for some reason.
// If this is the case, the time is probably not correct.
byte temp_buffer = readControlByte(1);
bool result = true;
if (temp_buffer & 0b10000000) {
// Oscillator Stop Flag (OSF) is set, so return false.
result = false;
}
return result;
}
/*****************************************
Private Functions
*****************************************/
byte DS3231::decToBcd(byte val) {
// Convert normal decimal numbers to binary coded decimal
return (val/10*16) + (val%10);
}
byte DS3231::bcdToDec(byte val) {
// Convert binary coded decimal to normal decimal numbers
return (val/16*10) + (val%16);
}
byte DS3231::readControlByte(bool which) {
// Read selected control byte
// first byte (0) is 0x0e, second (1) is 0x0f
Wire.beginTransmission(CLOCK_ADDRESS);
if (which) {
// second control byte
Wire.write(0x0f);
} else {
// first control byte
Wire.write(0x0e);
}
Wire.endTransmission();
Wire.requestFrom(CLOCK_ADDRESS, 1);
return Wire.read();
}
void DS3231::writeControlByte(byte control, bool which) {
// Write the selected control byte.
// which=false -> 0x0e, true->0x0f.
Wire.beginTransmission(CLOCK_ADDRESS);
if (which) {
Wire.write(0x0f);
} else {
Wire.write(0x0e);
}
Wire.write(control);
Wire.endTransmission();
}

View File

@@ -0,0 +1,183 @@
/*
* DS3231.h
*
* Arduino Library for the DS3231 Real-Time Clock chip
*
* (c) Eric Ayars
* 4/1/11
* released into the public domain. If you use this, please let me know
* (just out of pure curiosity!) by sending me an email:
* eric@ayars.org
*
*/
// Modified by Andy Wickert 5/15/11: Spliced in stuff from RTClib
// Modified by Simon Gassner 11/28/2017: Changed Term "PM" to "PM_time" for compability with SAMD Processors
#ifndef DS3231_h
#define DS3231_h
// Changed the following to work on 1.0
//#include "WProgram.h"
#include <Arduino.h>
#include <Wire.h>
// DateTime (get everything at once) from JeeLabs / Adafruit
// Simple general-purpose date/time class (no TZ / DST / leap second handling!)
class DateTime {
public:
DateTime (uint32_t t =0);
DateTime (uint16_t year, uint8_t month, uint8_t day,
uint8_t hour =0, uint8_t min =0, uint8_t sec =0);
DateTime (const char* date, const char* time);
uint16_t year() const { return 2000 + yOff; }
uint8_t month() const { return m; }
uint8_t day() const { return d; }
uint8_t hour() const { return hh; }
uint8_t minute() const { return mm; }
uint8_t second() const { return ss; }
uint8_t dayOfTheWeek() const;
// 32-bit times as seconds since 1/1/2000
long secondstime() const;
// 32-bit times as seconds since 1/1/1970
// THE ABOVE COMMENT IS CORRECT FOR LOCAL TIME; TO USE THIS COMMAND TO
// OBTAIN TRUE UNIX TIME SINCE EPOCH, YOU MUST CALL THIS COMMAND AFTER
// SETTING YOUR CLOCK TO UTC
uint32_t unixtime(void) const;
protected:
uint8_t yOff, m, d, hh, mm, ss;
};
class RTClib {
public:
// Get date and time snapshot
static DateTime now();
};
// Eric's original code is everything below this line
class DS3231 {
public:
//Constructor
DS3231();
// Time-retrieval functions
// the get*() functions retrieve current values of the registers.
byte getSecond();
byte getMinute();
byte getHour(bool& h12, bool& PM_time);
// In addition to returning the hour register, this function
// returns the values of the 12/24-hour flag and the AM/PM flag.
byte getDoW();
byte getDate();
byte getMonth(bool& Century);
// Also sets the flag indicating century roll-over.
byte getYear();
// Last 2 digits only
// Time-setting functions
// Note that none of these check for sensibility: You can set the
// date to July 42nd and strange things will probably result.
void setSecond(byte Second);
// In addition to setting the seconds, this clears the
// "Oscillator Stop Flag".
void setMinute(byte Minute);
// Sets the minute
void setHour(byte Hour);
// Sets the hour
void setDoW(byte DoW);
// Sets the Day of the Week (1-7);
void setDate(byte Date);
// Sets the Date of the Month
void setMonth(byte Month);
// Sets the Month of the year
void setYear(byte Year);
// Last two digits of the year
void setClockMode(bool h12);
// Set 12/24h mode. True is 12-h, false is 24-hour.
// Temperature function
float getTemperature();
// Alarm functions
void getA1Time(byte& A1Day, byte& A1Hour, byte& A1Minute, byte& A1Second, byte& AlarmBits, bool& A1Dy, bool& A1h12, bool& A1PM);
/* Retrieves everything you could want to know about alarm
* one.
* A1Dy true makes the alarm go on A1Day = Day of Week,
* A1Dy false makes the alarm go on A1Day = Date of month.
*
* byte AlarmBits sets the behavior of the alarms:
* Dy A1M4 A1M3 A1M2 A1M1 Rate
* X 1 1 1 1 Once per second
* X 1 1 1 0 Alarm when seconds match
* X 1 1 0 0 Alarm when min, sec match
* X 1 0 0 0 Alarm when hour, min, sec match
* 0 0 0 0 0 Alarm when date, h, m, s match
* 1 0 0 0 0 Alarm when DoW, h, m, s match
*
* Dy A2M4 A2M3 A2M2 Rate
* X 1 1 1 Once per minute (at seconds = 00)
* X 1 1 0 Alarm when minutes match
* X 1 0 0 Alarm when hours and minutes match
* 0 0 0 0 Alarm when date, hour, min match
* 1 0 0 0 Alarm when DoW, hour, min match
*/
void getA2Time(byte& A2Day, byte& A2Hour, byte& A2Minute, byte& AlarmBits, bool& A2Dy, bool& A2h12, bool& A2PM);
// Same as getA1Time();, but A2 only goes on seconds == 00.
void setA1Time(byte A1Day, byte A1Hour, byte A1Minute, byte A1Second, byte AlarmBits, bool A1Dy, bool A1h12, bool A1PM);
// Set the details for Alarm 1
void setA2Time(byte A2Day, byte A2Hour, byte A2Minute, byte AlarmBits, bool A2Dy, bool A2h12, bool A2PM);
// Set the details for Alarm 2
void turnOnAlarm(byte Alarm);
// Enables alarm 1 or 2 and the external interrupt pin.
// If Alarm != 1, it assumes Alarm == 2.
void turnOffAlarm(byte Alarm);
// Disables alarm 1 or 2 (default is 2 if Alarm != 1);
// and leaves the interrupt pin alone.
bool checkAlarmEnabled(byte Alarm);
// Returns T/F to indicate whether the requested alarm is
// enabled. Defaults to 2 if Alarm != 1.
bool checkIfAlarm(byte Alarm);
// Checks whether the indicated alarm (1 or 2, 2 default);
// has been activated.
// Oscillator functions
void enableOscillator(bool TF, bool battery, byte frequency);
// turns oscillator on or off. True is on, false is off.
// if battery is true, turns on even for battery-only operation,
// otherwise turns off if Vcc is off.
// frequency must be 0, 1, 2, or 3.
// 0 = 1 Hz
// 1 = 1.024 kHz
// 2 = 4.096 kHz
// 3 = 8.192 kHz (Default if frequency byte is out of range);
void enable32kHz(bool TF);
// Turns the 32kHz output pin on (true); or off (false).
bool oscillatorCheck();;
// Checks the status of the OSF (Oscillator Stop Flag);.
// If this returns false, then the clock is probably not
// giving you the correct time.
// The OSF is cleared by function setSecond();.
private:
byte decToBcd(byte val);
// Convert normal decimal numbers to binary coded decimal
byte bcdToDec(byte val);
// Convert binary coded decimal to normal decimal numbers
byte readControlByte(bool which);
// Read selected control byte: (0); reads 0x0e, (1) reads 0x0f
void writeControlByte(byte control, bool which);
// Write the selected control byte.
// which == false -> 0x0e, true->0x0f.
};
#endif

View File

@@ -0,0 +1,24 @@
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>